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SUMMARY 
The performance of the Galerkin finite element method when applied to time-dependent convection 
involving rotation, self-gravitation and the normal gravity field in a horizontal cylinder is discussed in this 
paper. The governing equations, the parameters of the problem and our implementation of the numerical 
schemes are presented. The accuracy, spatial scale of resolution, flexibility and robustness of the resulting 
code show the element method as a valuable tool for research in this area or in related problems in 
astrophysical fluid dynamics. The numerical difficulties in large-amplitude flows are associated with an error- 
control scheme for time integration and the ‘short-time’ wiggles in transient Dirichlet problems. Coarse grids 
give the correct qualitative picture in most simulations, but the type of solution at short time (and hence grid 
refinement) presumably resolves the degeneracy in the azimuthal orientation of convection cells in flows 
driven by self-gravitation and (perhaps) centrifugal buoyancy. The final state in transient flows is a 
motionless isothermal fluid. However, residual motions can be nullified only in the limit of zero grid size in 
flows driven by centrifugal buoyancy (self-gravitation), while a fairly coarse grid is sufficient for this purpose 
in normal gravity-driven flows. 

KEY WORDS. Finite element Convection Centrifugal Gravitation Cylinder 

1. INTRODUCTION 

The present study pertains to an application of the finite element method to the simulation of a 
time-dependent thermal convection problem involving rotation, self-gravitation and the normal 
external gravity field. The original study of the problem by Ladeinde’ represents an attempt at 
providing the needed engineering data for the design of an optimized manufacturing system for 
thermal processing of fluids enclosed in horizontal cylinders rotating about their axes in a normal 
gravity field. The model system is shown in Figure 1. Self-gravitation within the cylinder 
represents a limiting case of the rotating problem. 

The initial state in the system is a motionless fluid isothermal at room temperature. The 
contained fluid is spun up2 to establish a rigid body rotation. Thereafter the fluid undergoes a 
transient motion as the wall of the cylinder is heated by maintaining the wall at a high 
temperature. The final state in the system is motionless fluid isothermal at the new wall 
temperature. The cause of the transient motion is the combined action of the normal gravitational 
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Figure 1. Model rotating system for analysis, showing the inertial (X, Y, Z) and rotating (x. y, z) co-ordinate frames 

force field and the centrifugal force field on the density variations associated with temperature 
variations-essentially the well known fact that hot fluid 'rises'. 

Motion driven by normal gravity in a horizontal cylinder has been studied experimentally3-' 
and by finite difference calculations in an inertial co-ordinate frame.6-9 Thus we know the types of 
flow behaviour and temperature field to expect from numerical calculations of normal gravity- 
driven flows in an inertial co-ordinate frame. 

However, in the present study, the co-ordinate frame is chosen to rotate with the cylinder in 
order to explicitly introduce the centrifugal and Coriolis force fields. The normal gravity field is 
oscillatory in this co-ordinate frame. In terms of finite element implementation, the oscillation of 
the gravity field requires only a trivial modification of the buoyancy term of the momentum 
equation; or in fact, merely changing the value of an input parameter in the code. However, when 
the period is small, the oscillation of the normal gravity field introduces some difficulties in the 
temporal integration of the governing equations because the timescale of interest (i.e. for heat-up) 
is orders of magnitude larger than the period of oscillation of the gravity field, and the solution 
within a period of oscillation must be accurately obtained for an acceptable overall accuracy of the 
time integration. 

We have used the predictor-corrector time integration error-control scheme devised by Gresho 
et al.,1° since otherwise we do not know the accuracy to which the equations must be solved within 
a period of oscillation in order to obtain an acceptable overall accuracy. With the error-control 
scheme the largest step size which ensures a preset accuracy is used by the program. Note that (in 
numerical schemes without an error control) an arbitrarily large time step size (within a period of 
oscillation) simulates the false situation in which the normal gravity field is oscillatory in a 
laboratory frame of reference! 

Concerning centrifugal buoyancy, we remark that, at the beginning of the studies, our 
knowledge of centrifugally driven flow in a horizontal cylinder was inadequate for us to assess the 
accuracy of the initial numerical results. We are not aware of any previous studies (experimental, 
analytical or numerical) on centrifugally driven thermal convection in a horizontal cylinder. In 
fact a lot of difficulty would be encountered in an experimental investigation of rotating systems 
located on the surface of the Earth. That is, methods must be devised to nullify the effects of the 
ubiquitous normal gravity field, since otherwise it contaminates the results (see Hart et al." for 
pertinent discussions). Also, an analytical study is very difficult for transient centrifugally driven 
flow. We are thus left with numerical methods for the calculation of large-amplitude flows. 

In a previous study, however, we carried out an analytical study on the related problem of 
thermal convection in an internally heated self-gravitating cylinder.' The purpose of the study on 
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self-gravitation was to provide a theoretical basis and validate our code for the more difficult 
transient centrifugally driven flow. A study of self-gravitation is also of intrinsic academic interest. 
The studies mentioned above used classical mathematical techniques' ' to investigate the 
instability of the basic fluid state to non-axisymmetric perturbations. The results of the instability 
analysis were reproduced with the computer code discussed in this paper, and numerically 
extended to finite amplitude flows. 

We have expressed that self-gravitation in the cylinder simulates a limiting behaviour of the 
rotating case in the foregoing discussion. As we show later in this paper, the difference between the 
governing equations for convection driven by self-gravitation and the governing equations for 
convection driven by centrifugal force is the sign of a parameter in the equations. (Readers who are 
not familiar with the astrophysical concept of self-gravitation or the appropriate expression for a 
horizontal cylinder might want to consult T s ~ b 0 i . l ~ )  Note, however, that the surface of the 
cylinder is cooled in the self-gravitation problem to represent a sink for the volumetrically 
generated heat, while the cylinder wall is heated in the transient rotation problem. The foregoing 
analogy between self-gravitation and centrifugal force bears some resemblance to that used by 
Busse and Carrigan14 in the laboratory simulation of convection processes in stars and planets. 

The primary dependent variables are the velocities and temperature (i.e. u, u, w and T ) .  The 
secondary dependent variables are the streamfunction $, the vorticity [, the pressure p and the 
Nusselt number Nu.  The secondary variables are obtained by 'processing' the solutions for the 
primary variables. The governing equations and our implementation of the various finite element 
schemes for the solution of the governing equations are discussed for both the primary and 
secondary variables in succeeding sections of this paper. Sample results, code validation and 
comparison of results with previously published reports are presented, as are the major 
computational difficulties encountered in large-amplitude flows. 

Concluding remarks and appendices describing the element matrices and defining the notation 
are presented at the end of the paper. 

2. MATHEMATICAL FORMULATION 

2.1. Governing equations 

The model of interest in this paper is shown in Figure 1. In this model a horizontal cylinder with 
axis parallel to the z-axis, or k, rotates at a constant angular velocity R=Rk about its axis in 
a normal gravity field. Two co-ordinate systems are shown in Figure 1. The co-ordinate system 
( X ,  Y, Z )  with origin at 0 is the inertial (non-rotating) co-ordinate frame. The co-ordinate system 
(x, y ,  z), also with origin at 0, rotates at the container angular velocity Rk and is referred to as the 
rotating co-ordinate frame. The self-gravitating force field is radially directed towards the centre, 
while the centrifugal force field is radially directed outwards from the centre. The normal gravity 
field is unidirectional, pointing downwards in the inertial co-ordinate frame but oscillating in the 
rotating frame. A two-dimensional simulation in the ( r ,  0) co-ordinates of the cylinder is carried 
out here, since this represents a good approximation for this system because of the parameter 
range studied and the dynamic constraints introduced by rotation (see Busse' for pertinent 
details). Moreover, the cost of time-dependent three-dimensional simulation is prohibitive for the 
present (oscillating) flow problem. 

The governing equations for the motion of an incompressible viscous fluid are those stating the 
conservation of mass, momentum and energy. For the system shown in Figure 1, these equations, 
in Cartesian tensor notation, are' 

u .  1.1 .=o (1) 
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#i+uju, j+A&ijkbj~Uk+BTxi + P , i f  c: T - D ( n ( U i , j + U j , i ) ,  j ) = o ,  

T + u j T  j -  T j j -  H = O .  
(2) 

(3) 
The dot indicates partial differentiation with respect to time, and a comma followed by an index 
indicates partial differentiation with respect to the spatial co-ordinates indicated by the index. cijk 
is the permutation symbol (pseudo-tensor) and hi, is the Kronecker delta. The parameters of the 
system are defined as follows: 

A = RePr, 
B = Ra,Pr, 

D = Pr, 
E = E ( t )  = RaPr sin (RePrt/2), 
G = G(t) = RaPr cos(RePrt/2), 

X = (x, Y ,  O)*, 
where 

Re = 2R2R/v = rotational Reynolds number (or square root of Taylor number Ta) 
Pr = vo/a = Prandtl number, 
Ra, = Rg‘pbTR3/vcc = rotational or self-gravitating Rayleigh number, 
Ra = g P z R 3 / v a  = normal gravity Rayleigh number. 

In addition, the non-dimensional viscosity n = v/vo appears, which requires a specifying equation. 
Also note that: 

T, - To 
Q”‘R2/k internal heat generation problem, 

transient heating problem, 
internal heat generation problem, 

rotation problem, 

transient heating problem, z={ 

- 2np0 G self-gravitation problem. 

R, v, a, p and g are the radius of the cylinder, the kinematic viscosity of the fluid (with a reference 
value of vo),  the thermal diffusivity, the volumetric expansion coefficient and the normal gravity 
respectively. T, and To are the wall temperature and a reference temperature respectively, the 
latter being taken as the initial temperature in the system. Q”’ and k are the dimensional uniform 
heating rate and the thermal conductivity respectively, while G is the gravitational constant. 

Note that the Boussinesq approximation has been used in the derivation of equation (2). Also 
the pressure that appears in equation (2) is the reduced pressure which is given by 

R2 
POU 

p =z [P -+pog’(xz + y2) + p o  g (xsin Qt + y cos Qt) 1, (4) 

where P is the dimensional total pressure and p is the non-dimensional reduced pressure, which is 
due wholly to fluid motion. Furthermore, the term A E i j k d j 3 U k  can be removed from equation (2) by 
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further redefining the pressure.‘ The term represents a residual of the divergence of velocity in a 
dynamic sense (e.g. via the vorticity equation), and the deviation from zero is a measure of the error 
caused by a penalization of the incompressibility constraint. We have thus retained the term to 
find out the values of RePr that give acceptable solutions. The results presented in this paper are 
from simulations with negligible continuity residual. 

2.2. Initial and boundary conditions 

The initial condition is 

u=(u, u, T)*=O, 

the condition on the surface of the cylinder is u=v=O, and 

1 transient heating problem, 
0 internal heat generation problem. 

The Stokes streamfunction $ and z-component of vorticity, [, can be obtained in both inertial 
and rotating co-ordinate frames from the relation 

~a I au, 
r dr r ae [=--( rue)---+ ARePr = --A$, 

where 

0 rotating co-ordinate frame, 
1 inertial co-ordinate frame. 

%={ 

3. FINITE ELEMENT SOLUTION 

The consistent (not the reduced integration) penalty Galerkin finite element method with a time 
integration error control has been used for the solution of the governing equations for the primary 
dependent variables. The penalty formulation requires special treatments of the continuity 
equation and the pressure terms of the momentum equation. The continuity equation for the 
penalized system is 

(6b) 
where E‘ is the penalty parameter. 

Following standard finite element procedures (e.g. Gresho16) we obtain the weak forms of the 
continuity equation in (6b), the nth component of the momentum equation, and the energy 
equation as 

uj, j +  E‘p = 0, 
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(8) 
The definition oft, and 4 is obvious from the identities defined in equations (7) and (8). t ,  and q are 
supplied via a specified stress and heat flux condition (natural boundary conditions) on the 
bounding surface S of the domain Q. rl/ f is any of the pressure basis functions and cbi in (7) and (8) is 
any of the velocity (or temperature) basis functions. The appropriate expansions into the finite- 
dimensional piecewise polynomial basis sets are 

N 

uA= 1 u;(t)4j(x), (9) 

T= C T'(t)+j(x), ( 10) 

j =  1 

N 

j =  1 

where E. = 1,2 for the two velocity components, x = (x, y)*, and u$ and Tj are the respective values 
of uI and T at the velocity (temperature) node j .  The formulation is Galerkin because the same 
functions Q are used as test functions and for the interpolation of the dependent variables. 

The pressure p") within an element is allowed to vary linearly according to 
3 

j =  1 
P'"= 1 Pj(t)ICIJ(X), (1 1) 

where p j  is the value of the pressure at the jth pressure 'node' and $J is the corresponding basis 
function for interpolating pressure. With this formulation the pressure is discontinuous at element 
boundaries. Following Engelman et a l l 7  the pressure basis functions are chosen to be in the 
global space (1, x, y) ,  so that within an element we have 

p'e)= p1 + PZ + p 3 Y .  (12) 
At the element level the spatial co-ordinates x and y are interpolated according to 

where xk and yk  are the respective values of x and y at any element node k chosen for co-ordinate 
transformation, and the 4; are the interpolation functions for co-ordinate transformation. As we 
discuss shortly, we have chosen 4' diflerent from 4 in the present formulation. 

Using the relationships in (9H14), the matrix quations corresponding to equations (7) and (8) 
are 

jn) ;4 j ,ndRub+d {n):i;dRpj=O, (154 
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where i,j, I=1 ,  2 , .  . . , N ,  a, k = l ,  2 and p=l, 2 , .  . . , L. 
We have. used a Lagrange element consisting of a nine-node biquadratic interpolation for 

velocity (temperature) and a three-node discontinuous interpolation for pressure. The shape 
functions of the eight-node serendipity element have been used to map the geometry of the nine- 
node element. No significant error was expected (or observed) by this procedure since it is well 
known that both the nine-node Lagrange element and the eight-node serendipity element have 
identical boundary shape function." Thus, at the element level, the range of the summation 
indices in equation (9) or (10) is nine while that in equation (13) or (14) is eight. 

If we substitute for the nodal values of pressure ( p j )  that appear in the discretized momentum 
equation (15b) by using (15a) we will see that the contribution of the pressure terms to the 
discretized nth component of the momentum equation (other than the contribution to t , )  is 

E'C;j[OBj] - c;;u, + E' c;j[o,j] - cgZ;u,, 
where i, u = 1, 2, . . . , 9, j ,  f l=  1, 2, 3 and n = 1, 2; E' is the penalty parameter, 

and u, and ua are the values of u and u at the ath node of an element. Values between lo6 and 10" 
have been used for the penalty parameter E ' ,  depending on the magnitude of the flow parameter. 

The spatially discretized Galerkin finite element equations can be written as 

MU+K(u, U, d)u=f, u(O)=U,, (17) 

where u is the vector of nodal points of u, u and T, and K contains, among other things, the non- 
linear convective terms, the penalty terms and the viscous and thermal diffusion terms. f contains 
information on flux (kinematic and thermal) boundary conditions and the volumetric heating. 

The methods we have used for the time integration of equation (17) include those in which time 
steps are held fixed throughout the integration period and those in which time truncation error 
estimates are used to vary the step sizes in such a way that a given level of (time integration) 
accuracy is assured even if the time step size becomes quite large. The time step size is determined 
by the physics of the flow in this time integration scheme. The scheme has been discussed in detail 
by Gresho et al." 

We have used the backward Euler and the trapezoid rule for the constant-step-size integrations. 
However, all the results presented in the present paper were obtained with the error-control 
scheme. For the error-control scheme the solution at the end of a time step is predicted with the 
variable-step, second-order Adams-Bashforth (AB) formulae, or 
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where 1 denotes time level, At is the step size and the subscript 'p' denotes 'predictor'. The predicted 
solution is corrected by integration with the implicit, non-dissipative, completely stable, second- 
order trapezoid rule. When applied to the system in equation (17) the trapezoid rule is 

M u1 + f'+ f'+ ' -K(u')u'. 
2 [ & M + K(u' + 1 u l +  1 = - 

)]  At' 

We specify a maximum local time integration error tolerance c0 so that the next time step size 
which ensures this accuracy is given by 

where 

+ higher-order terms. d1+1 = 
u' + ' - U k f  

3(1 +At'-' /At')  

The details of the foregoing scheme, including the norm defined for 11 0 11, etc., can be found in the 
literature. We have used a value of e0 =0402 for all simulations with the error-control scheme. 

The Newton-Raphson procedure has been implemented for linearizing equation (1 9). The 
linearized system is 

1 2 ] At' 
[$M + K ( u F  ') + N ( u F  ') AII;+' = -Mu'+f '+ f '+  ' -K(u')u' - I )  U: 

(21) 

(22) 

so that 
u l + l  - 1 + 1  ,,,+'-urn + A u F ' .  

The subscript m denotes the iterations within a time step. The matrices in equation (21) are written 
out in full in Appendix I, along with the integrals involved. All integrals, including those 
containing the penalty parameter, were evaluated at 3 x 3 Gauss points. 

The results given in equation (21) were derived for the trapezoid rule. For the backward Euler 
the following adjustments to equation (21) are necessary: 

1 
K(u')u' + 0, f'+O. Z + P  

For the steady state version of the code we have 

2 
At' 
-+O, K ( u ' ) u ' + ~ ,  f '+f '* ' -+f .  

We have also weighted iteration values of u in order to accelerate the convergence of steady state 
calculations: 

u = (1 - cL)u, + xu, + 1 ,  

where a value of 0.67 has been used for a in most steady state calculations. Also, a continuation 
process has been implemented for steady state calculations involving relatively high parameter 
values. The iteration (or steady state) convergence criterion used is 

where n is the iteration or time level, M is the total number of nodes in the mesh and ui is u, u or T. 
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3.1. Penalty transient 

An implicit scheme must be used for a cost-effective time integration with the penalty method. 
In addition, the penalty parameter introduces considerable stiffness to the system shown in 
equation (17) or (21). The stiffness problem associated with a related system has been studied by 
Sani et a1.I9 and Sani." Based on the findings by Sani, a time integration which starts out with a 
dissipative scheme is required to severely damp out the unphysical high-frequency components at 
short time. We started the time integrations in the present study with three (corrector) steps of 
backward Euler. The integration was then completed with either the backward Euler or the 
trapezoid rule, with or without error control. 

3.2. Condensation of internal degrees of freedom 

We have implemented a condensation procedure whereby the degrees of freedom associated 
with the centre node of each element are removed prior to assembly. This was done to reduce the 
bandwidth of the assembled equations. A small bandwidth is desirable for the in-core skyline 
solution method employed in the present analysis. 

We note that because the element matrix is unsymmetric we cannot benefit from the efficient 
static condensation algorithm of Wilson.21 However, we have considerably simplified the 
condensation procedure for unsymmetric matrices. If we denote the original element square 
matrix by S, where the elements of S are arranged such that the equations corresponding to the 
centre node degrees of freedom are contained in the bottom rows of S, then the elements of the 
condensed matrix can be written as 

where i ,  j = 1,2, . . . , N2; N1 is the initial size ofelement matrix S (27 in the present problem), N2 is 
the size of the element matrix S after condensation (24 in the present problem) and X is the inverse 
of the element submatrices associated with the centre nodes. Similarly the condensed right-hand 
side F is 

where i = 1,2,  . . . , N2. The solution at the centre nodes can easily be retrived after solving for the 
element boundary nodes. It is readily shown that the solution for the variables associated with 
element centre node is given by 

U ( N 2 + i ) = X i j & ,  i, j =  1 ,2 , .  . . , N1 - N 2 ,  
where 

N 2  

k = l  
f j = F ( N 2 + j ) -  1 S ( N 2 + j ,  k )  U ( k )  

and U represents the nodal values of u. 

3.3. Calculation of secondary flow variables 

The streamfunction was calculated by direct finite element discretization of the relation given in 
equation (6a). We have used the so-called global smoothening technique described by Lee et a1.22 
for calculating the nodal values of vorticity and pressure, while the consistent heat flux 



56 F. LADEINDE AND K. E. TORRANCE 

method23* 24 has been used for calculating the Nusselt number. A fairly complete account of our 
implementation of these schemes is given in Ladeinde.’ 

3.4. Computation grids 

The grids we have used for the calculations are given in Figure 2. The grids have been referred to 
as S593, G201, G449 and G649, where the ‘S’ stands for ‘streamline’ mesh (after Bercovier et d2’) 
and the ‘G stands for ‘general’ mesh. The number 593, for example, refers to the total number of 
nodal points in the mesh, including nodes at element centroids. The general mesh is preferred 
because, with our modest mesh generation routine, elements are concentrated (i.e. waisted) at the 
centre when the streamline mesh is generated, and it is cumbersome to obtain comparable number 
of elements in the azimuthal and radial directions with the streamline mesh. The latter problem is 
very serious at  the wall, and the computed wall heat flux is grossly in error. Also, the fewer number 
of elements on the boundary means more unknowns, since our code deletes equations correspond- 
ing to specified (i.e. Dirichlet) boundary conditions. A satisfactory element distribution is obtained 
with the general mesh. The two meshes gave identical solutions for several test problems, although 
more elements were required with the streamline mesh. All the computations reported in this 
paper have been done with the general mesh. More information on the general meshes is provided 
in Table I, since they are useful for the discussions provided in subsequent sections of this paper. 

s593 G201 

G449 G649 

Figure 2. The grids employed for calculations. The nomenclature for the grids is defined in the text. Nine-node Lagrange 
elements are used for all computations reported in this paper 
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Table 1. Other details of the grids used for computation 

Property 
Grids 

G20 I G449 G649 

Number of elements 
Number of boudnary 

nodes for boundary 
condition specification 
and for heat flux 
calcuation 

Total number of nodes 
Number of primary 

degrees of freedom 
per node 

unknown primary 
variables 

Dirichlet boundary 
conditions for primary 
variables 

after removal of primary 
varibles with Dirichlet 
boundary conditions 

Total number of unknown 
secondary variables 
(JI, L P, Nu): 
variables are not coupled 

Total number of 

Total number of 

Number of unknowns 

45 

40 
20 1 

3 

603 (or 201 x 3) 

120 (or 40 x 3) 

483 (or 603-120) 

(3 x201)+40 
(for Nu) 

105 153 

56 
449 

3 

1347 

168 

72 
649 

3 

1947 

216 

1179 1731 

(3 x 449) + 56 (3 x 649) + 72 

4. SAMPLE RESULTS 

4.1. Code validation 

The computer code developed for the present problem has undergone stringent tests to establish 
its validity. This was necessary since we are not aware of any previous studies that have combined 
the schemes discussed above in one code. Some of the test problems are: 

(a) Transient heat conduction in an internally heated rectangular box.26 
(b) Steady state isothermal flow on a curved channel, R =  

(c) Flow over a rectangular step, R = 200.28 
(d) Steady state isothermal flow in a lid-driven cavity, R = 
(e) Steady or quasi-steady state normal gravity-driven thermal convection in a horizontal 

cylinder with applied temperature gradient (including cosine forms) or volumetric heat 
generation, lo3 l R a l  106.3073178 

The Reynolds number R is 
(I?)-' in the present formulation. 

(f) Transient thermal convection in a rectangular box, Ra= 105.32 
(g) Steady state thermal convection in a rectangulr box, lo3 l R a l  106.33-35 
(h) Critical Rayleigh number and most unstable wave number for the onset of flow in an 

internally heated self-gravitating horizontal cylinder.' Other important but trivial tests 



58 F. LADEINDE AND K. E. TORRANCE 

involve the reproduction of the analytical conduction temperature profile in the self- 
gravitating cylinder problem, and the rigid body solution for vorticity and streamfunction 
as observed in inertial and rotating co-ordinate frames. We also checked the computed 
period of oscillation of the normal gravity field against the exact value of 47clRePr (from 
equation (2)). 

Excellent agreement was observed in all test problems. The test problems in items (e) and (h) are 
of interest because they have a direct relevance to the present investigation. These cases will be 
discussed shortly after a brief discussion of Table I1 where we compare results obtained using our 
code with the benchmark solutions provided by de Vahl Davis3' for a comparison exercise 
suggested by Jones and Thompson.34 The exercise involves the simulation of natural convection 
in a square cavity. A horizontal temperature gradient is maintained in the basic state in the cavity 
by keeping the temperature at the left wall fixed at T= 1 and that at the right wall at T=O. The 
horizontal walls are insulated and velocities are zero at all walls. A Prandtl number of 0.71 is 
suggested, while values between lo3 and lo6 are used for the Rayleigh number. Diagnostic 
quantities such as $, M ~ ~ ~ ,  urnax, etc. are compared in Table 11. Note that a graded mesh (not shown) 
consisting of 84 elements with 361 nodal points is used in the present studies, whereas the 
benchmark solutions were obtained with a finite difference mesh of 61 x 61 nodal points. 

In Figure 3(a) we compare our steady state results for the Nusselt number distribution on the 
surface of a horizontal cylinder with those obtained by Hellums and C h ~ r c h i l l . ~ ~  The initial 
condition is M = v = T= 0 at t = 0 and M = u = 0 on the boundary, while the boundary condition on 
the temperature T is 

112 at R = l ,  O I 8 1 7 c ,  
-112 at R = l ,  7c18~2n.  

T={ 

The angle 8 is measured counterclockwise from the bottom of the cylinder. The parameter values 
are Ra = 4.305 x lo5 and Pr = 0.7. Hellums and Churchill used a finite difference grid of 1 1  x 26 for 
half the domain, while the flow in the whole domain is simulated (to assess the symmetry of 
solutions) using the mesh G449 (with 56 nodes for the Nusselt number) in the present calculations. 
The agreement between the two results is excellent. Note that the finite difference calculation by 
Hellums and Churchill could not give accurate (finite) values for the Musselt number at 8=0 and 
8 = 7c, but that no such difficulty was encountered in the present (consistent) method of calculating 
the heat flux. The temperature and the quantity Ue=(Pr-')u, calculated with our code are also 
compared with the numerical calculations by Hellums and Churchill and with the results of 

Table 11. Comparison with benchmark solutions provided by de Vahl Davis35 for natural convection in a square cavity. 
The boundary conditions and parameter values are discussed in the text. Note that the benchmark solutions were obtained 
from a finite difference mesh consisting of 61 x 61 nodal points, whereas only 84 elements (with 361 nodal points) were used 

for the present simulation. The reader is reminded that / $ I m a x  is centrally symmetric about (0.5, 0.5). 

Ra = lo3 Ra = lo5 Ra = lo6 
Quantity Benchmark Present Benchmark Present Benchmark Present 

I$lmid 1.174 1.172 9.1 1 1  9.072 16.32 16.30 

(x. Y) - (0.5, 0.5) (0.285, 0.601) (0.69, 0.3733) (0.151, 0.547) (0.8167, 0 5 )  
u,,, at x =0.5 3.649 3.642 34.73 34.25 64.63 62.7 
Y 0,813 0.8 167 0.855 0.88 0.850 0.88 
u,,, at y=03 3.697 3.689 68.59 67.45 219.36 219.53 

1.172 9.612 9559 16.750 16.659 - 
1111max 

X 0.178 0.183 0.066 0.0765 0.0379 0042 
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- 2 0  -1 

- Hellums and Churchill 
Present Calculations 

Angle, B 

Figure 3(a). Comparison of calculated Nusselt number distribution on the surface of a heated cylinder with those reported 
by Hellums and C h ~ r c h i l l . ~ ~  The consistent heat flux method of Gresho et aLZ4 was used in the present calculations. Both 
the ‘lumped mass method’ and the ‘consistent mass method’ gave identical results. Ra=4.305 x los, Pr=0.70 and 0 is 
measured counterclockwise from the bottom of the cylinder. The boundary conditions are discussed in the text. The angle 0 
shown in this figure is defined relative to the co-ordinate frame used by Hellums and Churchill. This is not so for all other 

figures in this paper 
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Figure 3(b). Temperature profile along the diameter O=O for natural convection in a horizontal cylinder for the 
conditions used by Hellums and Ch~rchill.~’ We compare our results with numerical calculations by Hellums and 

Churchill and with results from physical experiments, also carried out by Hellums and Churchill 



60 F. LADEINDE AND K. E. TORRANCE 

30C 

200 

D 

I00 

0 

Hellums and Churchill . - Physical Experiments + Cal cul ati on 
- 

Present Calculations 

- 

- 

0.5 0.6 0.7 0.8 0.9 1.0 
r 

Figure 3(c). The quantity Uo=(Pr-')u0 along the diameter 8=n for natural convection in a horizontal cylinder for the 
conditions used by Hellums and C h ~ r c h i l l . ~ ~  We compare our results with numerical calculations by Hellums and 

Churchill and with results from physical experiments, also carried out by Hellums and Churchill 

physical experiments, also carried out by Hellums and Churchill (Figures 3(b) and 3(c)). Temper- 
ature is calculated along the diameter 8 = 0, while U, is calculated along 8 = 7c. (@ here refers to our 
co-ordinate system, as is always the case unless stated otherwise.) 

The new results presented in this paper represent a numerical extension, to finite amplitude, of 
the analytical treatment of the internally heated self-gravitating cylinder problem. We will also 
present sample time-dependent solutions for the normal gravity-driven, internal heat generation 
problem of Van Sant.6 The latter results will be given in both inertial and rotating co-ordinate 
frames. Following this we will give a sample result to illustrate the flows observed when self- 
gravitation and the normal external gravity field are both present in the internally heated cylinder. 
The above studies are then repeated with surface heating 'replacing' volumetric heat generation, 
and the centrifugal force field (from rotation) replacing the self-gravitating force field. The normal 
gravity field plays an identical role to its role in the volumetric heat generation problem. 

The simulations in the original study involved Ra values between 0 and lo6, Ra, values between 
0 and lo6, and Re values beteen 0 and 250. More than 20 combinations of these three parameters 
were simulated. The Prandtl number and the dimensionless viscosity were held fixed at 7 and 1 
respectively for all calculations. We will discuss sample results from the volumetric heat 
generation problem first, followed by results from the transient heating problem. 
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4.2. Sample results from the volumetric heat generation problem 

4.2.1. Motion driven by self-gravitation (Ra= Re=O). It is first remarked that the transport of 
the heat generated within the cylinder is by molecular diffusion before the onset of motion. Under 
this condition the maximum temperature occurs at the geometric centre with a theoretical value of 
T,(O)=O.25 and decreases to a value of zero at the wall, or 

Thus the isotherms are concentric circles with centre at the orign. The total amount of heat 
generated within the cylinder is (theoretically) - n under quasi-steady state conditions. This heat 
escapes through the surface at an average wall flux of -0.5. Note that the total (average) heat flux 
at  the wall at quasi-steady state is independent of the strength of motion (Ra, or Ra) and is always 
equal to - n (- 0*5), although, as we report shortly, the local distribution along the wall is heavily 
dependent on the strength of fluid motion. 

It has been found from previous mathematical analysis' that the basic conduction solution (i.e. 
u = v = 0 and equation (23) for temperature) becomes unstable to non-axisymmetric perturbations 
at Ra, = 1.3738 x lo4. The instability sets in as direct (non-oscillatory) modes, the most unstable 
corresponding to an azimuthal wave number of 1 (i.e. a two-cell solution in the (r, 0) plane). These 
results have been reproduced with the present finite element code. Table 111 summarizes the 
results of a numerical simulation carried out for a range of Ra, values between 0 and lo6 for the 
purpose of determining the onset of motion. The strength of motion has been measured with the 
streamfunction and with q, the ratio of maximum temperature at conduction (i.e. T , ( O ) )  
to the maximum temperature at a particular Ra, values (i.e. T,). We observe from the table 
that the transport of heat is by conduction for Ra,< 1.4 x lo4. 

Table 111. Maximum temperature and streamfunction at various Ra, for the purpose of 
numerically determining the critical Rayleigh number for flows driven by self-gravitation 

within a horizontal cylinder' 

One location 
Ra, x Tm rl= Te(O)/TIIl of T,,, l*llnax 

0.0 
0 5  
1.2 
1.35 
1.4 
1.5 
1.66 
2.0 
2 5  
3.3 
4.0 

100 

100.0 

0.248, 0.25 
0.248, 0.25 
0.248 
0248 
0.248, 0247 
0.246 
0.239 
0.23 1 
0.217 
0.197 
0.190 
0154, 0.151 

-, 0.088 

1, - 
1~000, - 
1 
1 
1, - 
1.008 
1.038 
1.074 
1.143 
1.259 
1-305 
1.610, - 

(O,O), (0,O) 
(0, 01, (0, 0) 
(09 0) 
(0,O) 
(0, 01, (0, 0) 
(07 0) 
(-0.127, -0.127) 
(-0'251, 0) 
(-0.372, 0.310) 
(-0.372, 0.130) 
(-0.372, 0.130) 

( - 0.363, - 0.363) 
-, (0.470, -0.612) 

(0.381, 0.381) 

0 ,o  
0.0057, 0~00001 
0.0145 
0.0130 
0.014, 0.325 
0.746 
1.380 
1.728 
2.638 
3.077 
4.5 24 

7.706, 8.709 
-, 25.11 

In cases where three are two entries the first entry refers to G201 and the second refers to G449. 
A dash in an entry implies that the particular entry is not of interest or relevant. Note that the actual 
numbers do not carry much significance since very coarse grids are used. Only the qualitative trend is 
important. More details are given in the text. 
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We have provided Figure 4 to show the results obtained from numerical simulation at 
supercritical Ra,. We observe from the figures that fluid motion has become quite evident at 
Ra,= 1.66 x lo4 as $,,,ax has increased from the precritical value of zero to approximately 1.3. 
We also observe that the internally generated heat is more rigorously transported and that 
the hottest region has moved away from the centre. The foregoing trends have been considerably 
amplified at Ra,= lo’. 

The distribution of heat flux along the wall is useful design information. However, we have 
observed that the orientation of the convection cells (and hence the distribution of heat flux on the 
wall) remained rather arbitrary and could not be determined a priori for the supercritical Ra, 
values studied. The fact that no azimuthal orientation is preferred is an intrinsic property of the 
present problem-a property that presumably results from the uniform azimuthal component of 
the self-gravitation force at any radius. The solution at quasi-steady state is presumably 
determined by the solution at ‘short time’. As we show shortly, the latter problem is not 
encountered in flows driven by a unidirectional body force (i.e. normal gravity), and the regions of 
high heat flux and those of low heat flux are known a priori. We also remark that the arbitrary 
azimuthal orientation of convection cell and distribution of wall heat flux cannot be observed in 
numerical calculations which use only half of the domain (on the assumption of the existence of a 
symmetry axis). The degeneracy probably takes on a different form under such conditions. 

4.2.2. Motion driven by normal gravity in inertial and rotating frames (Ra,=O). Figures 5 and 6 
are provided to illustrate the effect of the choice of co-ordinate frame on motion driven by a 
normal gravity field in an internally heated horizontal cylinder. The Rayleigh number for both 
calculations is Ra = lo’. When the governing equations are solved in an inertial frame (Re = 0) the 
flowfield consists of an initially weak two-cell pattern that relaxes into fuller cells as the flow 
develops. The two-cell convection pattern is a familiar one from the literature.6, ’ The internally 
generated heat is transported (by upward-moving fluid) to the boundary, where the fluid is cooled 
and returned to the interior for further heating. 

The temporal evolution of the flow is slightly more complicated in a rotating frame. At short 
times the convection pattern observed in the rotating frame are the same ‘kidney beans’ (except for 
the orientation of the beans) observed in an inertial frame. However, as the flow develops the 
observer in the rotating frame sees one of the cells progressively getting bigger at the expense of the 
other. At quasi-steady state the observer sees a convection pattern consisting of a large cell with 
circulation in the clockwise sense and a small countercirculating eddy in one ‘corner’ of the 
cylinder. It is pointed out that the flowfield shown in Figure 6 is the one that will be observed in an 
internally heated horizontal cylinder of fluid rotating about its axis in a normal gravity field. The 
parameters for the sample case in Figure 6 are Ra = lo’, Re = 24.7, Pr = 7 and K = 1. The arrows in 
the figure show the instantaneous direction of the normal gravity field at the time indicated. We 
emphasize that only streamfunction (and vorticity) values obtained in the same co-ordinate 
system can be compared; and in the rotating frame we can compare streamfunction (and 
vorticity) values only in simulations involving the same Re and Pr values.’ 

4.2.3. Motion driven by a combination of sejf-gravitation and normal gravity field. The solution 
observed depends on the ratio F = Ra, fRa when the two body forces are combined. For F-tco  the 
solution is identical to that of motions driven only by self-gravitation at comparable Ra,, and 
conversely for F-rO. Interesting flows are observed when the effects of the two forces are 
comparable. Such an effect is shown in Figure 7 .  The quasi-steady state solution in this figure was 
obtained in a rotating frame with Ra= lo’, Ra= lo4, Re=78.4, Pr=7 and n= 1. 



w 

T 

5 

Figure 4. The effect of Rayleigh number Ra, on the quasi-steady state thermal convection in an internally heated self- 
gravitating cylinder. Quasi-steady state solutions are provided in terms of contour maps of streamfunction $, temperature 
T, vorticity 5 and pressure p .  Grid G201 was used. 

(i) Ra,= 1.66 x lo4: (ii) Ra,= 1 x lo5: 
$ = - 1.3(0.1)1.3, T=0(0.01)024, $ = - 56(0.8)64, T=0(0.01)016, 
i= -30(5)40, p= - 4000(500)3500. [ = - 210(30)240, p =  - 18000(2000)18000 
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Figure 5. Time-dependent behaviour of motions driven by normal gravity field in an internally heated non-rotating 
cylinder. Results are given for Ra = lo5, Pr=  7.0 and 1~ = 1. Note that the theoretical Nu at quasi-steady state is -0.5 for all 

Ras (or Ra,s). A value of -0.49 is shown in this figure. Grid used is G449 



Figure 6. Motions driven by normal gravity in an internally heated rotating horizontal cylinder. Solutions are given in 
terms of a co-ordinate system that rotates with the cylinder, in which case the normal gravity field is oscillatory. The arrows 
on the boundary wall show the orientation of the normal gravity field as preceived by an observer at rest in the 
(counterclockwise) rotating frame of reference. To the observer in the rotating frame the normal, fixed gravity field appears 
to rotate in the clockwise direction. Results are for the point Ra = lo5, Re = 24.7, Pr = 7.0 and x = I in the parameter space, 

and calculations were done with grid G449. An Re value 24.7 represents a fairly slow rotation 
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t = -12213 
I w l m a  = 33.71 
NU = -.3757 
T- = .lo2 

Figure 6. (Continued) 

Figure 7. Convective motions observed when the normal gravity field is combined with self-gravitation in an internally 
heated cylinder. Quasi-steady state contour maps for streamfunction $ and temperature Tare shown in this figure. The 

results are for the point RA, = los, Ra = 78.4, Pr = 7.0 and 7~ = 1.  Grid is G449 

4.3. Sample results from the transient heating problem 

The solutions obtained for the transient heating problem are in general very similar to those for 
internal heat generation. We provide Figure 8 to illustrate this fact. The figure shows the transient 
motion driven by normal gravity in a horizontal cylinder at Ra = lo5. We see the similarity with 
those obtained in the internal heat generation problem in an inertial frame by comparing 
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Figure 8. Transient behaviour of motions driven by normal gravity in non-rotating cylinder. The surface of the cylindc 
heated by maintaining the surface at high temperature. Note that the initial and final conditions in the cylinder 
characterized by zero velocities and by uniform dimensionless temperatures of 0 and 1 respectively. The results are 

Ra=lOS, Pr=7.0 and n=l .  Grid is G449 
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Figure 8. (Continued) 

Figures 5 and 8. The sense of circulation of convection cells is of course reversed in the two 
problems since the ‘basic’ temperature gradients are in opposite directions. Note that while the 
final state of the flow is quasi-steady in the internal heat generation problem, the final state of the 
flow in the transient heating problem is motionless and isothermal at  T= 1. Also, more rigorous 
flows are found in the transient heating problem when compared with the internal heat generation 
problem. 
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Similar behaviours are observed in flows driven by centrifugal force (in the transient heating 
problem) when compared with flows driven by self-gravitation (in the internal heat generation 
problem). Of course, differences exist in the details of the flows in the two problems, these 
differences being due to the stronger motions and the fact that the temperature profile is 
significantly modified much earlier in the transient problem. For reasons of space we cannot give a 
detailed discussion of the ’non-numerical’ aspects of the physics of the flows observed in the 
present study. Such discussions are provided in Ladeinde.’ However, in the next section of the 
present paper we will discuss the computational difficulties encountered during the simulations. 

5. COMPUTATIONAL ISSUES 

We have found it appropriate to report on the major computational difficulties encountered 
during the present simulation. Some of the difficulties are not familiar in the finite element 
literature and are reported here for the records. As expected, the difficulties are more serious in 
large-amplitude flows. The numerical difficulties are discussed under the following headings: 
error-control scheme, minimum time of believability, quasi-Newton method, lower bound to 
minimum velocity, and manifestation of solution non-uniqueness by grid refinement. 

5.1. Error-control scheme 

We were very pleased with the error-control scheme for Ra (Ra,) values below approximately 
5 x lo4 (lo5). In such cases the AB predictor was accurate so that only one Newton-Raphson 
iteration was necessary per time step. The scheme allowed very large time step sizes, resulting in a 
very ‘fast’ integration. In fact we observed a several thousand-fold increase in time step size at 
sufficiently low parameter values while ensuring a maximum time integration error of 0.2%. 

At higher parameter values the step size At computed by the error-control scheme became 
unacceptably low (usually after approximately 35 time steps in most problems) so that the scheme 
became unattractive when compared with a constant-time-step-size integration with the back- 
ward Euler or the trapezoid rule. The foregoing difficulty might have been due to the accumulated 
round-off errors resulting from the non-dissipative trapezoid rule. (Double-precision arithmetic 
was used and the phenomenon was observed in all computing machines used, including IBM 4381 
and VAX 750.) It is noted that the foregoing problem with the error-control scheme does not affect 
the accuracy of the solution. 

The difficulty might also have been due to a combination of the round-off errors at higher 
parameter values and the relatively constant timescales associated with convection-dominated 
flows. Following a suggestion by P. M. Gresho (in a private communication) we implemented a 
‘restart’ scheme in combination with the predictor-corrector method. We also implemented a 
scheme based on a forward Euler predictor and a backward Euler corrector for the same purpose. 
To implement the restart scheme we started the time integration ‘afresh’ after a preassigned 
number(s) of time steps (- 35 in this study). With the restart scheme we effectively ‘throw away’ the 
accumulated round-off errors which otherwise pollute the determination of the predicted values, 
giving unreliably small At. 

We have been satisfied with the restart scheme for R a 1 5  x lo5. The restart scheme also 
improved on the regular scheme for Ra > 5 x lo5, but computed Ats were still very low in this case 
and, in general, less cost-effective when compared with constant-step-size integration. The rate of 
increase of At with time for the predictor-corrector scheme based on the Euler formulae was too 
slow to recommend the method, and a constant-step-size integration with the backward Euler or 
the trapezoid rule (with backward Euler start) was used in cases where the ‘regular’(or the ‘restart’) 
error-control scheme did not perform satisfactorily. 



70 F. LADEINDE AND K. E. TORRANCE 

5.2, Minimum time of believability 

The difficulty discussed in this subsection pertains to simulations using conventional Galerkin 
finite element methods for the transient Navier-Stokes or even the transient heat conduction 
equations in problems involving an abrupt change in Dirichlet boundary  condition^.^^ The 
difficulty, which is mathematical in origin, was manifested in unphysical wiggles in the temper- 
ature field at short times in the transient studies. (Of course, no such difficulties were encountered 
in the heat generation problem.) 

The wiggles in most of our simulations occurred only at a few mesh points, had negligible 
amplitudes at Ra, R a , I  lo5, and had a maximum amplitude less than 6% of T,,, (depending on 
the grid) in the studies at Ra, Ra,= lo6. (TmaX is the maximum temperature.) The wiggles in all 
studies disappeared before t = 0.02 (i.e. ‘the minimum time of believability’ 2 002). The solutions in 
most of our calculations are of acceptable accuracy (see some guidelines suggested by Gresho and 
Lee36). The exception is the simulation involving the combination of Ra= lo6, Rar= lo6, 
Re=7.81, Pr=7 and n =  1. The velocities are very large in this case (0(103)) and very severe 
wiggles were observed at short times, the largest being 45% of T,,,! The wiggles had disappeared 
by t = 001 85. Although the calculated results look physically reasonable, a finer grid than G649 is 
clearly needed for a more accurate resolution of the initial transients for this difficult problem. We 
emphasize that the time at whcih the wiggles disappear is fairly independent of the mesh or the 
flow strength (including pure conduction) for the range of parameters and computational grids 
studied. 

5.3. Quasi-Newton method 

We experimented with the quasi-Newton method3’. 38 as an alternative to the 
Newton-Raphson method for linearizing the equations for the corrector. We were not impressed 
with the performance of the quasi-Newton method when compared with one-step 
Newton-Raphson for the present simulations. This was because too many quasi-Newton 
iterations (up to 15 in some cases) were required per time step to obtain the convergence needed for 
the error-control method. The poor convergence might have resulted from the condensation 
procedure discussed earlier in this paper. In particular, the element centre nodes cannot contribute 
to the Jacobian matrix (or its inverse) during the ‘quasi-Newton’ iterations between refactoring 
steps. Similar concerns have been expressed by M. Engelman (in a private communication). 

5.4. Lower bound on minimum velocity 

The numerical difficulty discussed in this section was observed in the transient calculations for 
centrifugally driven flows in a rotating cylinder. Isothermal conditions (T= 1) and zero velocities 
are expected in the final state in this case. However, we observed a lower bound on the minimum 
velocity over the flowfield. That is, a ‘residual’ fluid motion was present at the final state, even 
though we had no trouble driving the temperature to a uniform field of value unity. The lower 
bound was considerably reduced by mesh refinements, however. For example, at Ra, = lo5 the 
(maximum) residual velocities obtained with G201, G449 and G649 were approximately 15,5 and 
3 respectively. The temperature field had reached the isothermal value of unity by this time. We 
attribute the behaviours to the inability of coarse grids to sufficiently resolve the spatial 
dependence of the centrifugal force field (since no such behaviours were found in flows driven by a 
normal gravity field). Also note that fluid viscosity is needed to dissipate the residual flow in the 
isothermal field, and dissipative numerical schemes could be very ‘helpful’ in this respect-we have 
used a non-dissipative time integration scheme for most of the time steps. 
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The present difficulty is reminiscent of the (strictly unrelated) one encountered by Leonez8 in the 
penalty Galerkin finite element simulation of steady state stratified flow across Owens valley. 
Leone reported some convergence limit beyond which the calculations would not go, so that the 
quadratic convergence of the Newton-Raphson technique was not realized. The exact cause was 
not known. 

5.5. Manifestation of solution non-uniqueness by grid refinement 

It is remarkable that all the grids shown in Figure 2 gave solutions with similar qualitative 
pictures for the range of parameter values studied and for all force fields. However, a very 
significant effect of grid refinement was observed on the accuracy of the solutions for flows driven 
by a self-gravitating (or centrifugal) force field, with differences up to 100% for G201 when 
compared with G649. The corresponding value for normal gravity-driven flows was usually less 
than 5%.  Again, the spatial dependence of the forcing function terms is the probable cause. 

The times at which mode transitions occurred (not shown) and the time required for the 
attainment of a quasi-steady state were heavily dependent on the grid in the studies on a self- 
gravitating cylinder. Another manifestation of insufficient grid points for spatial integration was 
the sense of circulation of the convection cells. The results obtained (at certain times during the 
transient) for Ra, = lo5 using G449 and G649 are shown in Figure 9. The difference between the 

t = .51276 
Grid G449 
w = -5.6(.8)6.4 

T = 0(.008).136 

t = ,53869 
Grid G649 
U’= -6.3(.9)7.2 

T =  0(.009).144 

Figure 9. Non-uniqueness of quasi-steady solutions in motions driven by self-gravitation within a horizontal cylinder as 
manifested by grid refinement. Solutions are for Ra,= lo5. The results in this figure are analogous to the ‘2E and ‘2P 

solutions obtained by Weir-” in his study of a self-gravitating sphere 
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two solutions in this figure is the sense of circulation, and identical convection modes can be 
obtained by simply rotating one of the patterns by 90”. The two convection patterns shown in 
Figure 9 are analogous to the so-called ‘2E and ‘2P’ (or vice versa, depending on the chosen 
reference axis) solutions obtained by Weir39 in his study of self-gravitating spheres. 

We believe that the occurrence of the two convection modes is a result of the interaction 
between the intrinsic arbitrariness (if unrestrained) in the azimuthal orientation of the convection 
cells and inaccurate spatial integration. The initial conditions (solutions) presumably play a 
decisive role in the orientation of the convection cells, and such initial conditions are affected by 
the parameter values and the accuracy (grid refinement) of integration. 

6. CONCLUSIONS 

In this paper we have discussed the performance of the penalty Galerkin finite element method 
when applied to a very complex time-dependent thermal convection problem involving rotation, 
self-gravitation and the normal external gravity field. The results have established the element 
method as a potentially valuable research/analytical tool in this or related areas. Moreover, the 
element method is very attractive for new problems such as the present one. This is because code 
validation can be done in ‘loosely’ related problems and in any geometry without a change in the 
solution algorithm. Also note that the singularity at the centre of the cylinder, which poses 
difficulties for the finite difference method,8. 40 does not require any special considerations in a 
finite element framework. 

The difficulties encountered in large-amplitude flows in the present studies have been discussed, 
as were those associated with the oscillation of the normal gravity field. In retrospect, however, we 
feel that an explicit time integration scheme should have been used for those simulations involving 
a large frequency of oscillation of the normal gravity field (i.e. large Re) since the time step size 
must be very small. In this way we do not have to solve large matrices, and time step size restriction 
for stability will most likely be met, at least for the fully mixed non-penalty formulation. 

Concerning the large amplitude of the short-time wiggles in studies with large parameter values, 
a cost-effective scheme might start the time integration with a relatively fine grid (e.g. via higher- 
order approximations) and switch to a coarser grid (lower-order approximation) after the 
minimum time of believability has been reached (~20.02).  The related method of adaptive grid 
refinement could also be used. 

The foregoing proposals are currently being studied for implementation, as is a non- 
overlapping domain decomposition (i.e. block-by-block) method to permit the simulation of 
transient three-dimensional problems in computers with parallel processors. An intended 
application of the resulting code is the simulation of three-dimensional convection in rotating 
vertical cylinders with sloping ends. The latter model has found tremendous application in 
astrophysical fluid dynamics (see Busse and Or4’ and references therein). 
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APPENDIX I 

The matrices in equation (24) are 
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APPENDIX 11: NOMENCLATURE 

as defined in equation (20) 
right-hand-side vector 
Froude number, RaJ Ra 
gravity vector 
absolute value of gravity vector 
Gravitational constant 
dimensionless volumetric heat generation 
unit vector in x-direction 
unit vector in y-direction 
thermal conductivity 
unit vector in z-direction 
stiffness matrix 
mass matrix 
Newton-Raphson correction to stiffness matrix 
Nusselt number 
origin of inertial and rotating co-ordinate frames 
dimensionless reduced pressure 
dimensional total pressure 
Prandtl number 
dimensionless wall heat flux 
dimensional volumetric heat generation 
radial direction in polar co-ordinates 
radius of cylinder or Reynolds number, depending on context 
gravitational Rayleigh number 
rotational or self-gravitational Rayleigh number 
rotational Reynolds number 
dimensionless time or surface traction, depending on context 
dimensionless temperature 
(X? Y ,  4 
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At 
AT 
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AT 
V 
CI 

9 
P 
4i 
4; 

P 

El, E 

EO 

‘li 

dimensionless velocity in X or x-direction 
dimensionless velocity in r-direction 
dimensionless velocity in 9-direction 
(u, u)* ,  (u, u, w)* or (u, u, T ) ,  depending on context 
dimensionless velocity in Y or y-direction 
dimensionless velocity in 2- or z-direction 
x-direction in inertial Cartesian frame of reference 
x-direction in rotating Cartesian frame of reference 
y-direction in inertial Cartesian frame of reference 
y-direction in rotating Cartesian frame of reference 
z-direction in inertial Cartesian frame of reference 
z-direction in rotating Cartesian frame of reference 
axial vorticity 
Stokes streamfunction 
domain or angular velocity, depending on context 
surface of R 
viscosity ratio 
time step size 
temperature difference T- To 
temperature difference T, - To 
kinematic viscosity 
thermal diffusivity 
azimuthal direction in polar co-ordinates 
dimensional fluid density 
ith basis function for biquadratiitic Lagrange nine-node element 
ith basis function for eight-node serendipity element 
penalty parameter 
preset error limit 
thermal expansion coefficient 
ith component of the normal vector to a surface 

Subscripts 

m iteration level 
0 reference value, hydrostatic 
P predictor 
W wall 
n normal 

Superscripts 

1 time level 
transpose 
time derivative 

* 
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